Multilabel dimensionality reduction via dependence maximization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Dimensionality Reduction via Distance Correlation Maximization

In our work, we propose a novel formulation for supervised dimensionality reduction based on a nonlinear dependency criterion called Statistical Distance Correlation, [Székely et al., 2007]. We propose an objective which is free of distributional assumptions on regression variables and regression model assumptions. Our proposed formulation is based on learning a lowdimensional feature represent...

متن کامل

Learning with Weak Views Based on Dependence Maximization Dimensionality Reduction

Large number of applications involving multiple views of data are coming into use, e.g., reporting news on the Internet by both text and video, identifying a person by both fingerprints and face images, etc. Meanwhile, labeling these data needs expensive efforts and thus most data are left unlabeled in many applications. Co-training can exploit the information of unlabeled data in multi-view sc...

متن کامل

Auxiliary Variational Information Maximization for Dimensionality Reduction

Mutual Information (MI) is a long studied measure of information content, and many attempts to apply it to feature extraction and stochastic coding have been made. However, in general MI is computationally intractable to evaluate, and most previous studies redefine the criterion in forms of approximations. Recently we described properties of a simple lower bound on MI, and discussed its links t...

متن کامل

Dimensionality reduction via discretization

The existence of numeric data and large amounts of records in a database pose a challenging task to explicit concepts extraction from the raw data. This paper introduces a method that reduces data vertically and horizontally, keeps the discriminating power of the original data, and paves the way for extracting concepts. The method is based on discretization (vertical reduction) and feature sele...

متن کامل

Feature Selection via Dependence Maximization

We introduce a framework of feature selection based on dependence maximization between the selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence Criterion. The key idea is that good features should be highly dependent on the labels. Our approach leads to a greedy procedure for feature selection. We show that a number of existing feature selectors are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Knowledge Discovery from Data

سال: 2010

ISSN: 1556-4681,1556-472X

DOI: 10.1145/1839490.1839495